

Evaluación de resultados de ensayo del IT130116

LABORATORIO: Unidad Técnica del Mármol, AIDICO

Camí de Castella nº 4.

Novelda-03660

Alicante

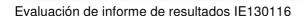
PETICIONARIO:

NOGOSA SOLUCIONES CONSTRUCTIVAS

Partida Campet B-18 03660 Novelda-Alicante

1. Objetivos de la evaluación del informe

El objetivo principal del presente informe es la caracterización de las propiedades mecánicas y de la durabilidad de un producto laminado, comercializado con la denominación LAYSTONE, consistente en una lámina de fibra con resina adherida a una fina película de piedra natural (de diferente naturaleza).


2. Ensayos realizados

Para la realización de este estudio se han llevado a cabo ensayos de adhesión por tracción de las diferentes familias de materiales que han sido agrupadas en tres tipos principales de rocas:

- Pizarra(Forest y Grafito),
- Filitas y Lutitas (Blanco, Terra Rossa, Autum, Multicolor y Vulcano)
- Esquistos (Cobre, Kane, Green Sea, Silver Rain y Galaxy)

Los ensayos que se han realizado a las muestras son:

- Ensayo de envejecimiento por choque térmico, tomando como referencia la norma de piedra natural UNE-EN 14066
- Ensayo de adhesión mediante la medida de resistencia a tracción en muestras sin envejecer y en muestras envejecidas por choque térmico, siguiendo como referencia la norma UNE-EN 1348
- Resistencia a tracción del adhesivo de colocación, según UNE-EN 1348

3. Resultados

A continuación se presentan los resultados de ensayo que se obtuvieron y que quedan detalladamente descritos en el informe de resultados IT130116.

Ensayo de adhesión mediante la medida de resistencia a tracción en muestras sin envejecer

MUESTRA	RESISTENCIA MEDIA (MPa)	TIPO DE FALLO
PIZARRA	2,8	CF-T
FILITA Y LUTITA	3,4	CF-T
ESQUISTO	2,8	CF-T

CF-T: Fallo 100% cohesión de la piedra natural. Esto significa que la rotura en el ensayo de tracción se produce en la propia piedra produciéndose una delaminación del material pétreo. Esto significa que la unión entre la piedra y la fibra con resina es mas resistente que la propia cohesión interna del material

RESISTENCIA A LA TRACCIÓN MEDIA DEL LAMINADO DE PIEDRA NATURAL TRAS ENVEJECIMIENTO POR CHOQUE TÉRMICO

MUESTRA	RESISTENCIA MEDIA (MPa)	TIPO DE FALLO
PIZARRA	2,2	CF-T
FILILTA Y LUTITA	2,2	CF-T
ESQUISTO	2,9	CF-T

CF-T: Fallo 100 % Rotura cohesiva del laminado de piedra

La finalidad de estos ensayos es, verificar la unión a través se produce la rotura tras un ensayo de tracción y evaluar el valor obtenido. En todos los casos se produce rotura cohesiva de la piedra natural, es decir, en estos ensayos se ha obtenido que la unión resina-lámina de piedra natural es mayor a la cohesión de la lámina de piedra. Observando el tipo de fallo producido tanto en muestras sin envejecer como en muestras envejecidas por choque térmico, se concluye que la unión entre la resina y la piedra es más resistente que la propia cohesión de la piedra natural.

La realización del envejecimiento por choque térmico, se lleva a cabo para comprobar si dicho envejecimiento afecta a la unión resina-laminado de piedra natural. Tras la realización de los ciclos de choque térmico y del ensayo de tracción a las muestras envejecidas, se ha observado que la unión sigue siendo más resistente que la propia cohesión de la piedra natural. La cohesión de la piedra natural decrece para los materiales de pizarras y de lutitas y filitas.

Por otro lado se llevó a cabo la realización de un ensayo de Resistencia a tracción del adhesivo de colocación. La finalidad de este ensayo es determinar la resistencia a la tracción que presenta la unión entre el producto, es decir el material LAYSTONE, y el soporte sobre el que se coloca usando para realizar dicha unión el adhesivo que comercializa la empresa peticionaria denominado como *LAYSTONE GLUE*. Los resultados que se han obtenido se resumen a continuación en la tabla y quedan descritos de manera detallada en el informe de resultados IT-130116.

RESISTENCIA A TRACCIÓN DEL ADHESIVO DE COLOCACIÓN (UNE-EN 1348)			
TIPO DE ADHERENCIA	RESISTENCIA MEDIA (MPa)	TIPO DE FALLO	
INICIAL	0,83	CF-T	
DESPUÉS DE ENVEJECIMIENTO POR CALOR	1,42	CF-T	

CF-T: Fallo 100% cohesión de la piedra natural. Esto significa que la rotura en el ensayo de tracción se produce en la propia piedra produciéndose una delaminación del material pétreo. Esto significa que la unión entre la piedra y la fibra con resina es mas resistente que la propia cohesión interna del material.

En la norma UNE-EN 12004 se indican las especificaciones para adhesivos de colocación de baldosas cerámicas y otra clase de baldosas (piedra natural o aglomerada, etc.) que sean compatibles. Los requisitos para adhesivos en dispersión son los siguientes: adherencia inicial ≥1 N/mm2, adherencia después de envejecimiento por calor ≥1 N/mm². En el caso de los ensayos realizados se puede concluir que la resistencia a la tracción de la unión entre el soporte y el producto es superior a esos valores y en todo caso que esta resistencia no compromete la estabilidad del producto ya que el tipo de rotura o fallo observado tras el ensayo de resistencia muestra que la fuerza de unión entre el laminado de piedra y el soporte de hormigón, utilizando el adhesivo LAYSTONE GLUE es mayor que la propia cohesión de la piedra.

4. Conclusiones:

El producto laminado conocido como LAYSTONE ha sido ensayado en AIDICO para determinar tanto la resistencia a la tracción del propio producto como la resistencia a la tracción de la unión al soporte usando el adhesivo LAYSTONE GLUE.

Los tipos de rotura que se han obtenido en todos los casos indican que la resistencia a la tracción de este tipo de producto viene determinada por la propia cohesión interna de los materiales de piedra que se han empleado. Esto significa que tanto la unión de lámina de roca con la resina como la unión del producto al soporte presentan una mayor resistencia a la tracción que el valor de cohesión que tiene la piedra natural usada.

Los valores que se obtienen en los ensayos indica que este tipo de material presenta una resistencia en torno a 3 MPa que es equivalente a 3 N/mm². Estos valores hacen que el material se recomiende para usos en los cuales no se requieran grandes prestaciones de resistencia a tracción tales como recubrimiento de paredes o muros en los cuales no se precisa una elevada resistencia a tracción.

Para situaciones o aplicaciones en las que el material pueda verse sometido a cambios significativos de temperatura (por estar en exteriores por ejemplo), se recomienda según los resultados obtenidos, los productos de la gama de los esquistos al no presentar decrecimiento en la resistencia a la tracción tras someterse a choque térmico.